What are fertilizers ? Classification of fertilizers

                                                            FERTILIZER             
Image result for fertilizer

                   
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  fertilizer (American English) or fertiliser (British English; see spelling differences) is any material of natural or synthetic origin (other than liming materials) that is applied to soils or to plant tissues to supply one or more plant nutrients essential to the growth of plants. Many sources of fertilizer exist, both natural and industrially produced.

Contents

  • 1Mechanism
  • 2Classification
    • 2.1Single nutrient ("straight") fertilizers
    • 2.2Multinutrient fertilizers
      • 2.2.1Binary (NP, NK, PK) fertilizers
      • 2.2.2NPK fertilizers
    • 2.3Micronutrients
  • 3Production
    • 3.1Nitrogen fertilizers
    • 3.2Phosphate fertilizers
    • 3.3Potassium fertilizers
    • 3.4Compound fertilizers
    • 3.5Organic fertilizers

      Mechanism

      Fertilizers enhance the growth of plants. This goal is met in two ways, the traditional one being additives that provide nutrients. The second mode by which some fertilizers act is to enhance the effectiveness of the soil by modifying its water retention and aeration. This article, like many on fertilizers, emphasises the nutritional aspect. Fertilizers typically provide, in varying proportions:
      • three main macronutrients:
        • Nitrogen (N): leaf growth
        • Phosphorus (P): Development of roots, flowers, seeds, fruit;
        • Potassium (K): Strong stem growth, movement of water in plants, promotion of flowering and fruiting;
      • three secondary macronutrients: calcium (Ca), magnesium (Mg), and sulfur (S);
      • micronutrients: copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), zinc (Zn), boron (B). Of occasional significance are silicon (Si), cobalt (Co), and vanadium (V).
      The nutrients required for healthy plant life are classified according to the elements, but the elements are not used as fertilizers. Instead compounds containing these elements are the basis of fertilizers. The macro-nutrients are consumed in larger quantities and are present in plant tissue in quantities from 0.15% to 6.0% on a dry matter (DM) (0% moisture) basis. Plants are made up of four main elements: hydrogen, oxygen, carbon, and nitrogen. Carbon, hydrogen and oxygen are widely available as water and carbon dioxide. Although nitrogen makes up most of the atmosphere, it is in a form that is unavailable to plants. Nitrogen is the most important fertilizer since nitrogen is present in proteins, DNA and other components (e.g., chlorophyll). To be nutritious to plants, nitrogen must be made available in a "fixed" form. Only some bacteria and their host plants (notably legumes) can fix atmospheric nitrogen (N2) by converting it to ammonia. Phosphate is required for the production of DNA and ATP, the main energy carrier in cells, as well as certain lipids.
      Micronutrients are consumed in smaller quantities and are present in plant tissue on the order of parts-per-million (ppm), ranging from 0.15 to 400 ppm DM, or less than 0.04% DM. These elements are often present at the active sites of enzymes that carry out the plant's metabolism. Because these elements enable catalysts (enzymes) their impact far exceeds their weight percentage.

      Classification

      Fertilizers are classified in several ways. They are classified according to whether they provide a single nutrient (e.g., K, P, or N), in which case they are classified as "straight fertilizers." "Multinutrient fertilizers" (or "complex fertilizers") provide two or more nutrients, for example N and P. Fertilizers are also sometimes classified as inorganic (the topic of most of this article) versus organic. Inorganic fertilizers exclude carbon-containing materials except ureas. Organic fertilizers are usually (recycled) plant- or animal-derived matter. Inorganic are sometimes called synthetic fertilizers since various chemical treatments are required for their manufacture.

      Single nutrient ("straight") fertilizers

      The main nitrogen-based straight fertilizer is ammonia or its solutions. Ammonium nitrate (NH4NO3) is also widely used. Urea is another popular source of nitrogen, having the advantage that it is solid and non-explosive, unlike ammonia and ammonium nitrate, respectively. A few percent of the nitrogen fertilizer market (4% in 2007) has been met by calcium ammonium nitrate (Ca(NO3)2 · NH4NO3 · 10H2O).
      The main straight phosphate fertilizers are the superphosphates. "Single superphosphate" (SSP) consists of 14–18% P2O5, again in the form of Ca(H2PO4)2, but also phosphogypsum (CaSO4 · 2H2O). Triple superphosphate (TSP) typically consists of 44-48% of P2O5 and no gypsum. A mixture of single superphosphate and triple superphosphate is called double superphosphate. More than 90% of a typical superphosphate fertilizer is water-soluble.

      Multinutrient fertilizers

      These fertilizers are common. They consist of two or more nutrient components.

      Binary (NP, NK, PK) fertilizers

      Major two-component fertilizers provide both nitrogen and phosphorus to the plants. These are called NP fertilizers. The main NP fertilizers are monoammonium phosphate (MAP) and diammonium phosphate (DAP). The active ingredient in MAP is NH4H2PO4. The active ingredient in DAP is (NH4)2HPO4. About 85% of MAP and DAP fertilizers are soluble in water.

      NPK fertilizers

      NPK fertilizers are three-component fertilizers providing nitrogen, phosphorus, and potassium.
      NPK rating is a rating system describing the amount of nitrogen, phosphorus, and potassium in a fertilizer. NPK ratings consist of three numbers separated by dashes (e.g., 10-10-10 or 16-4-8) describing the chemical content of fertilizers. The first number represents the percentage of nitrogen in the product; the second number, P2O5; the third, K2O. Fertilizers do not actually contain P2O5 or K2O, but the system is a conventional shorthand for the amount of the phosphorus (P) or potassium (K) in a fertilizer. A 50-pound (23 kg) bag of fertilizer labeled 16-4-8 contains 8 lb (3.6 kg) of nitrogen (16% of the 50 pounds), an amount of phosphorus equivalent to that in 2 pounds of P2O5 (4% of 50 pounds), and 4 pounds of K2O (8% of 50 pounds). Most fertilizers are labeled according to this N-P-K convention, although Australian convention, following an N-P-K-S system, adds a fourth number for sulfur, and uses elemental values for all values including P and K.

      Micronutrients

      The main micronutrients are molybdenum, zinc, and copper. These elements are provided as water-soluble salts. Iron presents special problems because it converts to insoluble (bio-unavailable) compounds at moderate soil pH and phosphate concentrations. For this reason, iron is often administered as a chelate complex, e.g., the EDTA derivative. The micronutrient needs depend on the plant. For example, sugar beets appear to require boron, and legumes require cobalt.

      Production

      Nitrogen fertilizer

      Image result for Nitrogen fertilizers


      Deposits of
       sodium nitrate (NaNO3) (Chilean saltpeter) are also found in the Atacama desert in Chile and was one of the original (1830) nitrogen-rich fertilizers used. It is still mined for fertilizer.Nitrogen fertilizers are made from ammonia (NH3), which is sometimes injected into the ground directly. The ammonia is produced by the Haber-Bosch process. In this energy-intensive process, natural gas (CH4) usually supplies the hydrogen, and the nitrogen (N2) is derived from the air. This ammonia is used as a feedstock for all other nitrogen fertilizers, such as anhydrous ammonium nitrate (NH4NO3) and urea (CO(NH2)2).

      Phosphate fertilizers


      In the nitrophosphate process or Odda process (invented in 1927), phosphate rock with up to a 20% phosphorus (P) content is dissolved with nitric acid (HNO3) to produce a mixture of phosphoric acid (H3PO4) and calcium nitrate (Ca(NO3)2). This mixture can be combined with a potassium fertilizer to produce a compound fertilizer with the three macronutrients N, P and K in easily dissolved form.All phosphate fertilizers are obtained by extraction from minerals containing the anion PO43−. In rare cases, fields are treated with the crushed mineral, but most often more soluble salts are produced by chemical treatment of phosphate minerals. The most popular phosphate-containing minerals are referred to collectively as phosphate rock. The main minerals are fluorapatite Ca5(PO4)3F (CFA) and hydroxyapatite Ca5(PO4)3OH. These minerals are converted to water-soluble phosphate salts by treatment with sulfuric (H2SO4) or phosphoric acids (H3PO4). The large production of sulfuric acid as an industrial chemical is primarily due to its use as cheap acid in processing phosphate rock into phosphate fertilizer. The global primary uses for both sulfur and phosphorus compounds relate to this basic process.

      Potassium fertilizers

      Potash is a mixture of potassium minerals used to make potassium (chemical symbol: K) fertilizers. Potash is soluble in water, so the main effort in producing this nutrient from the ore involves some purification steps; e.g., to remove sodium chloride (NaCl) (common salt). Sometimes potash is referred to as K2O, as a matter of convenience to those describing the potassium content. In fact potash fertilizers are usually potassium chloride, potassium sulfate, potassium carbonate, or potassium nitrate.[15]

      Compound fertilizers

      Compound fertilizers, which contain N, P, and K, can often be produced by mixing straight fertilizers. In some cases, chemical reactions occur between the two or more components. For example, monoammonium and diammonium phosphates, which provide plants with both N and P, are produced by neutralizing phosphoric acid (from phosphate rock) and ammonia :
      NH3 + H3PO4 → (NH4)H2PO4
      2 NH3 + H3PO4 → (NH4)2HPO4

      Organic fertilizers

      Compost bin for small-scale production of organic fertilizer
      A large commercial compost operation
      Organic fertilizers” can describe those fertilizers with an organic — biologic — origin—that is, fertilizers derived from living or formerly living materials. Organic fertilizers can also describe commercially available and frequently packaged products that strive to follow the expectations and restrictions adopted by “organic agriculture” and ”environmentally friendly" gardening — related systems of food and plant production that significantly limit or strictly avoid the use of synthetic fertilizers and pesticides. The “organic fertilizer” products typically contain both some organic materials as well as acceptable additives such as nutritive rock powders, ground sea shells (crab, oyster, etc.), other prepared products such as seed meal or kelp, and cultivated microorganisms and derivatives.
      Fertilizers of an organic origin (the first definition) include animal wastes, plant wastes from agriculture, compost, and treated sewage sludge(biosolids). Beyond manures, animal sources can include products from the slaughter of animals — bloodmealbone mealfeather meal, hides, hoofs, and horns all are typical components.[2] Organically derived materials available to industry such as sewage sludge may not be acceptable components of organic farming and gardening, because of factors ranging from residual contaminants to public perception. On the other hand, marketed “organic fertilizers” may include, and promote, processed organics because the materials have consumer appeal. No matter the definition nor composition, most of these products contain less concentrated nutrients, and the nutrients are not as easily quantified. They can offer soil-building advantages as well as be appealing to those who are trying to farm / garden more “naturally”.[16]
      In terms of volume, peat is the most widely used packaged organic soil amendment. It is an immature form of coal and improves the soil by aeration and absorbing water but confers no nutritional value to the plants. It is therefore not a fertilizer as defined in the beginning of the article, but rather an amendment. Coir, (derived from coconut husks), bark, and sawdust when added to soil all act similarly (but not identically) to peat and are also considered organic soil amendments - or texturizers - because of their limited nutritive inputs. Some organic additives can have a reverse effect on nutrients — fresh sawdust can consume soil nutrients as it breaks down, and may lower soil pH — but these same organic texturizers (as well as compost, etc.) may increase the availability of nutrients through improved cation exchange, or through increased growth of microorganisms that in turn increase availability of certain plant nutrients. Organic fertilizers such as composts and manures may be distributed locally without going into industry production, making actual consumption more difficult to quantify.

Post a Comment

0 Comments